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Abstract

We present an O(nm) algorithm for all-pairs shortest paths

computations in a directed graph with n nodes, m arcs, and

nonnegative integer arc costs. This matches the complexity

bound attained by Thorup [26] for the all-pairs problems

in undirected graphs. Our main insight is that shortest

paths problems with approximately balanced directed cost

functions can be solved similarly to the undirected case. Our

algorithm starts with an O(m
√
n logn) preprocessing step

that finds a 3-min-balanced reduced cost function. Using

these reduced costs, every shortest path query can be solved

in O(m) time using an adaptation of Thorup’s component

hierarchy method. The balancing result is of independent

interest, and gives the best currently known approximate

balancing algorithm for the problem.

1 Introduction

Let G = (N,A, c) be a directed graph with nonnegative
arc costs, and n = |N |, m = |A|. In this paper, we
consider the single-source shortest paths (SSSP) and the
all-pairs shortest paths (APSP) problems. In the SSSP
problem, the goal is to find the shortest paths from a
given source node s ∈ N to every other node; in the
APSP problem, the goal is to determine the shortest
path distances between every pair of nodes.

For the SSSP problem, there are two classic types
of algorithms (see Ahuja et al. [1, Chapters 4-5]): la-
bel correcting and label setting algorithms. The fastest
algorithms for the SSSP are label setting algorithms, in-
cluding Dijkstra’s classical 1959 algorithm [5]. Fredman
and Tarjan [9] showed how to implement Dijkstra’s al-
gorithm in O(m+ n log n) time via the development of
a new data structured that they called Fibonacci heaps.
Under the assumption that all of the arc lengths are in-
tegral, Thorup [27] improved the running time for the
SSSP to O(m+n log log n). Thorup’s algorithm uses the
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word RAM model of computation, discussed in Section
2.

For the APSP problem, one can obtain O(mn +
n2 log log n) by running the SSSP algorithm of [27] n
times. This has been the best previously known result
for directed graphs. The main contribution of this paper
is an O(mn) algorithm for APSP in the word RAM
model.

Our new result achieves the same complexity for
APSP in directed graphs as in undirected graphs. A
breakthrough result by Thorup [26] obtained a linear
time SSSP algorithm in the word RAM model for
undirected graphs, also implying O(mn) for APSP. Our
O(mn) APSP algorithm is based on an O(m

√
n log n)

preprocessing algorithm that enables SSSP queries in
O(m) time.

Thorup’s [26] algorithm is a label setting algorithm
that is similar to Dijkstra’s algorithm. Label setting
algorithms maintain upper bounds D(i) on the true
shortest path distances d(i) from the origin node s
to node i, and add nodes one-by-one to the set of
permanent nodes S. At the time a node i is made
permanent, D(i) = d(i) holds. In Dijkstra’s algorithm,
the node that is made permanent is the one with the
least value of D( ). That is, in the iteration when node
i is made permanent, we have D(i) ≤ D(j) for all other
nodes j /∈ S.

Let us define the bottleneck costs for nodes i, j ∈ N
as
(1.1)

b(i, j) = min

{
max
e∈P

c(e) : P is an i–j path in G

}
.

Dinitz [6] showed that label setting algorithms are
guaranteed to find the shortest path distances if the
following is true whenever a node j is made permanent:
for each node i that is not yet permanent, D(j) ≤
D(i) + b(i, j). If an algorithm satisfies this weaker
condition, then at termination it obtains distances
satisfying d(j) ≤ d(i) + b(i, j) for all i and j, which
in turn implies the shortest path optimality conditions:
d(j) ≤ d(i) + c(i, j) for all (i, j) ∈ A.
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Thorup’s algorithm as well as the algorithm pre-
sented in this paper rely on this weaker guarantee of
correctness. Both algorithms accomplish this by creat-
ing a component hierarchy; the variant we use is de-
scribed in Section 2. Thorup developed the hierarchy
framework for the SSSP on undirected networks. The
hierarchy framework was extended to directed graphs in
[12, 20, 21].

Our results also rely on the classical observation
that shortest path computations are invariant under
shifting the costs by a node potential. For a potential
π : N → R, the reduced cost is defined as cπ(u, v) =
c(u, v) + π(u) − π(v). Computing shortest paths for c
and any reduced cost cπ are equivalent: if P is a u–v
path, then cπ(P ) = c(P ) + π(u)− π(v).

We extend the use of reduced costs to the bottleneck
costs.

bπ(i, j) = min

{
max
e∈P

cπ(e) : P is an i–j path in G

}
.

Our preprocessing step obtains a reduced cost function
satisfying the following ξ-min-balancedness property for
a constant ξ > 1.

Definition 1.1. A strongly connected directed graph
G = (N,A, c) with nonnegative arc costs c ∈ RA+ and
ξ ≥ 1 is ξ-min-balanced if for any arc e ∈ A, there
exists a directed cycle C ⊆ A with e ∈ C, such that
c(f) ≤ ξc(e) for all f ∈ C.

The importance of ξ-min-balancedness in the con-
text of hierarchy-based algorithms arises from the near-
symmetry of the bottleneck values b(i, j): Lemma 2.1
below shows a graph is ξ-min-balanced if and only if
b(j, i) ≤ ξb(i, j) for all i, j ∈ N . Thorup’s component
hierarchy for undirected graphs implicitly relies on the
fact that b(i, j) = b(j, i) for all nodes i and j. For a
ξ-balanced reduced cost function cπ, the values bπ(i, j)
and bπ(j, i) are within a factor ξ. We can leverage this
proximity to use component hierarchies essentially the
same way as for undirected graphs in Thorup’s original
work [26], and achieve the same O(m) complexity for
an SSSP query, after an initial O(m

√
n log n) balancing

algorithm.
This balancedness notion is closely related to the

extensive literatue on matrix balancing and gives an
improvement for approximate `∞-balancing. We give
an overview of the related literature in Section 1.1.2.

1.1 Related work

1.1.1 Shortest path problem In the context of
shortest path computations, the choice of the computa-
tional model is of high importance. The main choice is

between the addition-comparison model with real costs,
and variants of word RAM models with integer costs.
In the addition-comparison model, the arithmetic op-
erations of additions and comparisons each take O(1)
time, regardless of the quantities involved. The other
mathematical operations are not permitted except in
so much as they can be simulated using additions and
comparisons.

There is an important difference between these com-
putational models in terms of lower bounds: sorting
in the addition-comparison model requires Ω(n log n),
whereas no superlinear lower bound is known for integer
sorting. Since Dijkstra’s algorithm makes nodes perma-
nent in a non-decreasing order of the shortest path dis-
tance d(i) from s, the O(m+n log n) Fibonacci-heap im-
plementation [8] is an optimal implementation of Dijk-
stra’s algorithm in the real addition-comparison model;
this is in fact the best current running time of an SSSP
algorithm in this model.

The best bound for APSP in the real addition-
comparison model is O(mn+n2 log log n) by Pettie [21].
This matches the best previous running time bounds
for the integer RAM model, where this was previously
obtained in [12, 27].

Pettie’s [21] algorithm is based on the hierarchy
framework. The same paper gives a lower bound that,
at first glance, seems to prove that an O(m) running
time for the directed SSSP is not achievable.

Let r be the ratio between the largest and the
smallest nonzero arc cost. Pettie argued if a shortest
path algorithm for the directed SSSP is based on the
hierarchy framework, then the running time of the
algorithm is Ω(m + min{n log r, n log n}), even if the
hierarchy is already provided. His argument applied
to analysis using word RAM model of computation as
well as the real addition-comparison model. Moreover,
his argument is valid even if the hierarchy framework
is provided in advance. But Pettie’s definition of
the hierarchy framework for directed networks did not
incorporate reduced costs. Therefore, his arguments
do not contradict our development of an O(m) time
algorithm for the directed SSSP.

For undirected graphs, Pettie and Ramachan-
dran [22] solve APSP in O(mn logα(m,n)) in the
real addition-comparison model, where α(m,n) is
the inverse Ackermann function. After an O(m +
min{n log n, n log log r}) time preprocessing step, every
SSSP problem can be solved in time O(m logα(m,n)).

For dense graphs, that is, graphs with m = Ω(n2)
edges, O(nm) = O(n3) can be achieved using the
classical Floyd-Warshall algorithm [7, 28]. However,
it is possible to achieve complexity o(n3). The first
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such algorithm was given by Fredman [8], in time

O(n3/ log1/3 n). This was followed by a long series
of improvements with better logarithmic factors, see
references in [29]. In 2014, Williams [29] achieved a

breakthrough of O(n3/2Ω(logn)1/2), by speeding up min-
plus (tropical) matrix multiplication using tools from
circuit complexity.

1.1.2 Approximate graph and matrix balancing
Our notion of ξ-min-balanced graphs is closely related
to previous work on graph and matrix balancing. For
ξ = 1, we simply say that G is min-balanced.

In Lemma 2.1, we will show that a graph G is
min-balanced if and only if for each proper subset S
of nodes, the following is true: the minimum cost over
arcs entering S is at equal to the minimum cost over
arcs leaving S.

Schneider and Schneider [23] defined max-balanced
graphs where for every subset S, the maximum cost
over arcs entering S equals the maximum cost over arcs
leaving S. For each e ∈ E, let c′(e) = cmax− c(e). Then
G is max-balanced with respect to c′ if and only if G
is min-balanced with respect to c. For exact min/max-
balancing, the running time O(mn+n2 log n) by Young,
Tarjan, and Orlin [30] is still the best known complexity
bound. Relaxing the exact condition, we can achieve

the significantly better running time O(m
√
n logn
ξ−1 ) for

ξ-min-balancing for 1 < ξ, ξ = O(1).

Min-balancing extends the min-mean cycle prob-
lem: if C is a min-mean cycle, then any min-balanced
residual cost function satisfies cπ(e) ≥ µ for all e ∈ E
and cπ(e) = µ for e ∈ C for some µ ∈ R. In fact, fol-
lowing [23], one can solve min-balancing as a sequence
of min-mean cycle computations, see the discussion af-
ter Theorem 3.1. Karp’s 1978 O(mn) algorithm [13]
is still the best known strongly polynomial algorithm
for min-mean cycle problem. Weakly polynomial algo-
rithms that run in O(m

√
n log(nC)) time were given

by Orlin and Ahuja [15] and by McCormick [14]. The
latter provides a scaling algorithm based on the same
subroutine of Goldberg [11] that plays a key role in our
balancing algorithm. The algorithm in [14] easily ex-
tends to finding an ε-approximate min-mean cycle in
O(m

√
n log(n/ε)) time. That is, finding a reduced cost

cπ, a cycle C, and a value µ such that cπ(e) ≥ µ for all
e ∈ E and cπ(e) ≤ (1 + ε)µ for all e ∈ C.

A restricted case of the APSP is the problem
of finding the shortest cycle in a network. Orlin
and Sedeño-Noda [16] show how to solve the shortest
cycle problem in O(nm) time by solving a sequence of
n (truncated) shortest path problems, each in O(m)
time. Their preprocessing algorithm was the solution

of a minimum cycle mean problem in O(nm) time.
However—analogously to the approach in this paper—
they could have relied instead on McCormicks algorithm
to find a 2-approximation of the minimum cycle mean
in O(m

√
n log n) time.

We say that a graph is weakly max-balanced, if for
every node v ∈ N , the maximum cost over arcs entering
v equals the maximum cost over arcs leaving v; that
is, we require the property in the definition of max-
balancing only for singleton sets S = {v}.

This notion corresponds to the well-studied matrix
balancing problem: given a nonnegative matrix M ∈
Rn×n, and a parameter p ≥ 1, find a positive diagonal
matrix D such that in DMD−1, the p-norm of the i-
th column equals the p-norm of the i-th row. Given
G = (N,A, c), we let Mij = ecij if ij ∈ A and Mij = 0
otherwise. Then, balancing M in ∞-norm amounts to
finding a weakly max-balanced reduced cost cπ.

Matrix balancing was introduced by Osborne [17]
as a natural matrix preconditioning for eigenvalue com-
putations. He also proposed a natural iterative algo-
rithm for `2-norm balancing. Parlett and Reinsch [19]
extended this algorithm for other norms. Schulman
and Sinclair [24] showed that a natural variant of the
Osborne–Parlett–Reinsch (OPR) algorithm finds an ε-
approximately balanced solution in `∞ norm in time
O(n3 log(nρ/ε)), where ρ is the initial imbalance. Ostro-
vsky, Rabani, and Yousefi [18] give polynomial bounds
for variants of the OPR algorithm for fixed finite p val-
ues, in particular, O(m + n2ε−2 logw) for a weighted
randomized variant, where w is the ratio of the sum
of the entries over the minimum nonzero entry, and
m is the number of nonzero entries. Very recently,
Altschuler and Parillo [3] showed an Õ(mε−2 logw)
bound for a simpler randomized variant of OPR. Co-
hen et al. [4] use second order optimization techniques
to attain Õ(m log κ log2(nw/ε)), where κ is the ratio
between the maximum and minimum entries of the op-
timal rescaling matrix D; similar running times follow
from [2]. The value κ may be exponentially large; [4]
also shows a Õ(m1.5 log(nw/ε)) bound via interior point
methods using fast Laplacian solvers.1

Our graph balancing problem corresponds to `∞
matrix balancing. Except for [24], the above works are
applicable for finite `p norms only. Compared to [24],
our approximate balancing algorithm has lower polyno-
mial terms, but our running time depends linearly on
1/ε instead of a logarithmic dependence.2

1In the quoted running times, Õ(.) hides polylogarithmic
factors. Various papers define ε-accuracy in different ways; here,
we adapt the statements to `1-accuracy as in [3].

2We note that, in contrast to the previous work, we consider
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1.2 Overview The rest of the paper is structured as
follows. Section 2 introduces the notation and basic con-
cepts, including the word RAM computational model,
and the directed variant of component hierarchies used
in this paper. Section 3 is dedicated to the approximate
min-balancing algorithm. The algorithm is developed
in several steps: a key ingredient is a subroutine by
Goldberg [11] that easily gives rise to a weakly poly-
nomial algorithm. In order to achieve a strongly poly-
nomial bound, we need a further preprocessing step to
achieve an initial ‘rough balancing’. At the beginning
of Section 3, we give a detailed overview of the overall
algorithm and the various subsections.

In Section 4, we describe the shortest path algo-
rithm for 3-min-balanced directed graphs. This is very
similar to Thorup’s original algorithm [26]. However,
the setting is different, and we use a slightly different no-
tion of the component hierarchy. We included a mostly
complete yet concise description of the algorithm and
the proof of correctness. Concluding remarks are given
in the final Section 5.

Some technical details are deferred to the full ver-
sion of the paper available at arxiv:2007:07975. From
Section 3, these include the description of the new
Union-Find-Increase data structure, and the precise
adaptation of Goldberg’s algorithm. From Section 4,
some proofs and the details of the Split/FindMin data
structure are omitted here.

2 Notation and preliminaries

For an integer k, we let [k] = {1, 2, . . . , k}. We let Z+

denote the nonnegative integers and let Z++ denote the
positive integers; similarly for Q+ and Q++. We let
log x = log2 x refer to base 2 logarithm unless stated
otherwise.

Throughout, we let G = (N,A, c) be a directed
graph with nonnegative integer arc costs c ∈ ZA+, and
we let n = Θ(|N |) and m = |A|; we will always assume
n,m ≥ 2. All graphs considered will be simple and
loopless. We write n = Θ(|N |) instead of n = |N |
since for the sake of the arithmetic model, it will be
convenient to assume that n = 2t is an integer power
of 2. Thus, we can define n as the smallest power of 2
greater or equal to |N |.

For a node i ∈ N , we let A(i) denote the set of the
outgoing arcs from i. For an arc set F ⊆ A, we let N(F )

min- rather than max-balancing. The exact min- and max-
balancing problems can be transformed to each other by setting
c′(e) = cmax − c(e); however, such a reduction does not preserve
multiplicative approximation factors, and hence our result cannot
be directly compared with [24]. Nevertheless, it seems that both
algorithms can be adaptable to both the min and max settings.
Such extensions are not included in this paper.

denote the set of nodes incident to F . For a node set
X ⊆ N , we let A[X] denote the set of arcs in A with
both endpoints inside X.

For a node set S ⊆ N , we let S̄ denote the
complement of S, i.e., S̄ = N \ S. We let (S, S̄) denote
the set of arcs directed from a node of S to a node of S̄.

For a node set Z ⊆ N , we let G/Z denote the graph
obtained by contracting Z. We let G/Z = (N ′, A′, c′),
where N ′ = (N \ Z) ∪ {z}; here, z represents the
contracted node set. We include every arc (i, j) ∈ A
in A′ with the same cost if i, j /∈ Z. Arcs with both
endpoints in Z are deleted. If i ∈ Z or j ∈ Z,
the corresponding endpoint is replaced by z. In case
parallel arcs are created, we only keep one with the
smallest cost. For a partition P = (P1, P2, . . . , Pk) of
N , the contraction G/P denotes the graph obtained
after contracting each of the sets Pi, i ∈ k in G; these
contractions can be done in an arbitrary order.

We will assume that G = (N,A, c) is strongly
connected, that is, a directed path exists between any
two nodes. If the input is not strongly connected,
then we preprocess the graph as follows. We find the
strongly connected components in O(n+m) time using
Tarjan’s algorithm [25]. We select a value M greater
than the sum of all arc costs, pick one node in each
strongly connected component, add a directed cycle on
these nodes, and set the cost of these arcs to M . This
results in a strongly connected graph G′ = (N,A′, c′)
with |A′| = O(m + n). Computing shortest paths is
equivalent in G′ and in G; if the shortest path distance
between nodes i and j in G′ is at least M , then j is not
reachable from i in G.

The word RAM model There is no universally
accepted computational model for integer weights. We
use the same as [12]; this is slightly more restrictive than
the model in [26], which also allows unrestricted mul-
tiplications. Our model is the standard random access
machine model, where every memory cell can store an
integer of w bits, where we assume w ≥ log n. Unit-
time operations include comparison, addition, subtrac-
tion, bit shifts by an arbitrary number of positions, bit-
wise boolean operations, and the most significant bit
operation, that returns blog rc for an integer r. We do
not allow multiplications and divisions in general. How-
ever, the bit shift operations enable multiplications by
integer powers of 2 in O(1) time. We can also simulate
multiplications by an integer b using O(log b) addition
and bit shift operations. Due to the assumption that n
is a power of 2, multiplying by a monomial term such
as bnk can be done in O(1) time if b, k = O(1). Simi-
larly, bit shift operations combined with bitwise boolean
operations enable integer divisions by powers of 2.

For r ∈ Z+, we use the notation brc2 as the
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largest integer power of 2 smaller or equal than r; thus,
brc2 ≤ r < 2brc2. This can be implemented by the most
significant bit operation.

The input cost vector c is given by integer costs. We
assume that each input and output number fits into a
single word; that is, both the input and the output can
be described in size O(m). Hence, our computational
assumes that we can perform basic operations with the
costs and distance labels in unit-time throughout the
algorithm. In case this assumption does not hold, our
algorithm could be modified to run in time linear in
output size, as in [26].

Dijkstra’s algorithm Dijkstra’s algorithm [5] was
the starting point of the fastest algorithms for the SSSP
and the APSP. We now give a brief overview of the key
steps. The algorithm maintains distance labels D(i) for
each node i that are upper bounds on d(i), the shortest
path distance from s. The algorithm adds nodes one-
by-one to a permanent node set S with the property
that D(i) = d(i) for every i ∈ S. Further, for every
i ∈ N \ S, D(i) is the length of a shortest s–i path in
the subgraph induced by the node set S ∪ {i}.

These are initialized as D(s) = 0, D(i) = ∞ for
i ∈ N \{i}, and S = ∅. Every iteration adds a new node
to S, selecting the node i ∈ N \S with the smallest label
D(i). Then, the algorithm considers every outgoing arc
(i, j), and updates D(j) to min{D(j), D(i) + c(i, j)}.
The crucial property of the analysis is that this selection
rule is correct, that is, for i ∈ arg min{D(j) : j ∈ N \S},
we must have D(i) = d(i).

Bottleneck costs in balanced graphs Our
shortest path algorithm will assume that the input
graph is ξ-min-balanced (see Definition 1.1). An im-
portant consequence is that in such graphs, the bottle-
neck costs will also be approximately balanced, as shown
next.

Recall the definition of the bottleneck cost b(i, j) in
(1.1). We extend the definition to non-empty disjoint
subsets S, T ( N as follows: b(S, T ) = min{b(i, j) : i ∈
S, j ∈ T}. Thus, b(S, S̄) = min{c(i, j) : i ∈ S, j ∈ S̄}.
By a bottleneck i–j path we mean an i–j path where the
maximum arc cost is b(i, j).

Lemma 2.1. The following are equivalent.

(1) G is ξ-min-balanced.

(2) For all proper subsets ∅ 6= S ( N , b(S̄, S) ≤
ξb(S, S̄).

(3) For all i ∈ N and j ∈ N , b(j, i) ≤ ξb(i, j).

Proof. (1) ⇒ (2). Suppose that G is ξ-min-balanced
and suppose that ∅ 6= S ( N . Choose e = argmin{c(e) :
e ∈ (S, S̄)}. Thus, c(e) = b(S, S̄). Let C be the

bottleneck cycle containing e. Because C contains an
arc f of (S̄, S), the following is true: b(S̄, S) ≤ c(f) ≤
ξc(e) = ξb(S, S̄).

(2) ⇒ (3). Suppose that (2) is true. For given
nodes i and j, let S = {k ∈ N : b(j, k) ≤ ξb(i, j)}.
Clearly, j ∈ S. We claim that i ∈ S, and thus b(j, i) ≤
ξb(i, j). We will show that i ∈ S via a contradiction.
Suppose that i ∈ S̄. Let e = argmin{c(e) : e ∈ (S, S̄)},
and suppose that e = (h, `). Then b(j, h) ≤ ξb(i, j)
because h ∈ S. And c(h, `) = b(S, S̄) ≤ ξb(S̄, S) ≤
ξb(i, j) by (2) and the fact that the bottleneck path
from i to j includes an arc of (S̄, S). Then b(j, `) ≤
max{b(j, h), c(h, `)} ≤ ξb(i, j). But this implies that
` ∈ S, which is a contradiction.

(3) ⇒ (1). Suppose that (3) is true. Let e = (j, i)
be any arc of A. Note that b(j, i) ≤ c(e). Let P be a
path from i to j with arcs of length at most b(i, j), and
let C = P ∪{e}. Then C is a cycle, and max{c(f) : f ∈
C} ≤ max{b(i, j), c(e)} ≤ max{ξb(j, i), c(e)} ≤ ξc(e).
Thus, G is ξ-min-balanced.

The component hierarchy We now introduce
the concept of the component hierarchy. This is a
variant of Thorup’s [26] component hierarchy, adapted
for approximately min-balanced directed graphs. The
papers [12, 20, 21] also use component hierarchies for
directed graphs. However, our notion exploits the ξ-
min-balanced property, and will be more similar to
the undirected concept [26] in that it does not impose
orderings of the children of the vertices.

The definition uses the standard terminology for
rooted trees. Consider a tree (V ′, E′) rooted at r ∈ V ′.
• For v ∈ V ′ \ {r}, the parent p(v) of v is the first

vertex after v on the unique path in the tree from v
to r. All nodes in the path are called the ancestors
of v.

• For v ∈ V ′, children(v) ⊆ V ′ is the set of nodes u
such that p(u) = v.

• For u, v ∈ V ′, lca(u, v) is the least common ancestor
of u and v, i.e. the unique vertex on the u–v path
in E′ that is an ancestor of both u and v.

Definition 2.1. Given a strongly connected directed
graph G = (N,A, c) and value λ > 1, (V ∪N,E, r, a) is
called the component hierarchy of G with parameter λ
if

• (V ∪N,E) is a tree with root r ∈ V , and N is the
set of leaves. The vector a : V → Q+ is an integer
power of λ: a(v) = λt(v) for some t(v) ∈ Z+.

• For every v ∈ V , the set desc(v) ⊆ N is the set
of leaves of the subtree rooted at v. The subgraph
induced by desc(v) is strongly connected.
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• For any i, j ∈ N with lca(i, j) = v, we have
a(v) ≤ b(i, j) ≤ (2λ−1)a(v); moreover, there exists
a bottleneck i–j path entirely contained inside the
subgraph induced by the node set desc(v).

3 An algorithm for approximate min-balancing

This section is dedicated to the proof of the following
theorem. The algorithm asserted in the theorem is
presented in Algorithm 3.

Theorem 3.1. Assume we are given a strongly con-
nected directed graph G = (N,A, c) with nonnegative in-
teger arc costs c ∈ ZA+, and parameters ξ > 1, ξ = O(1),

and λ = (ξ+ 1)/2. There exists an O
(
n1/2m logn

λ−1

)
time

algorithm in the word RAM model that finds a potential
π ∈ QN such that cπ is ξ-min-balanced. For ξ = 3 and
λ = 2, in the same running time we can also obtain a
component hierarchy of (N,A, cπ) with parameter 2.

We note that a component hierarchy can also be
obtained for other parameter values, using a more
permissive arithmetic model, including multiplication
and division. The definition of the component hierarchy
requires the a(v) values to be integer powers of the
(possibly fractional number) λ. For λ = 2, we can
essentially work with integers and only use divisions
amounting to bit-shifts, but for fractional λ values, more
careful rational arithmetics would be needed. We do not
present such a variant as the component hierarchy will
be only required for λ = 2 in Section 4.

To give an overview of the algorithm, it is instruc-
tive to start from the problem of exact min-balancing,
that is, ξ = 1, even though our algorithm is not appli-
cable to this case. For ξ = 1, the exact max-balancing
algorithms [23, 30] can be used (by negating the costs).
The simple and natural algorithm (see [23]) is based
on the iterative application of min-mean cycle finding.
First, we find all arcs that are in a min-mean cycle in
the graph; let µ ≥ 0 denote the minimum cycle mean
value, and F the set of all arcs in such cycles. Every
arc e ∈ F must have cπ(e) = µ if cπ is a min-balanced
reduced cost function. To see this, note that for every
cycle C and every potential π, cπ(C) = c(C) ≥ |C|µ.
If cπ(e) < µ for an arc in a min-balanced reduced cost
function, then it would need to be contained in a cy-
cle C with cπ(C) < µ|C|, a contradiction. The equality
cπ(C) = |C|µ for minimum mean cycles then shows that
cπ(e) = µ must hold for every edge in C.

In fact, the minimum cycle mean finding algorithm
produces a potential π such that cπ(e) ≥ µ for all e ∈ E,
and cπ(e) = µ for all e ∈ F . We can then contract
all connected components of F , and recurse on the
contracted graph, by repeatedly modifying the potential

π and contracting the components of minimum-mean
cycles.

The current best running time for min-balancing
is O(mn + n2 log n) [30]. The current best running
time for a single minimum-mean cycle computation is
O(mn) [13]. Both of these running times are substan-
tially higher than the overall running time given in The-
orem 3.1.

We can thus only afford to approximately compute
min-mean cycles. This can be achieved faster, using
a subroutine in Goldberg’s paper [11], originally devel-
oped for a weakly polynomial algorithm for negative
cycle detection. Our variant of this subroutine, Small-
Cycles, is introduced in Section 3.1. There are some
minor technical differences from [11]; the detailed de-
scription of the subroutine and the proof of correctness
are given in the full version of the paper.

The input to the subroutine Small-Cycles is a
strongly connected directed graph with minimum arc
cost L. In time O(m

√
n), we can identify strongly

connected components of arcs with reduced cost in the
range of [L, ξL], while also finding a new potential
such that the reduced arc of any cost between different
connected components is at least λL (recall λ = (ξ +
1)/2).

If the input graph has positive arc costs, the it-
erative application of this subroutine yields a sim-
ple weakly polynomial algorithm with running time

O
(
m
√
n log(nCmax/Cmin)

λ−1

)
, as described in Section 3.2.

In order to turn this into a strongly polynomial
algorithm, we first devise a preprocessing algorithm to
find a 7n2-min-balanced reduced cost in Section 3.3.
The main part of this algorithm is determining the
balance values β(e) for all arcs e ∈ E; this is defined
as the smallest value b such that G contains a cycle
C with e ∈ C and c(f) ≤ b for all f ∈ C. These
balance values can be efficiently found using a a divide-
and-conquer framework. The potential π achieving
a ‘rough’ balancing can be defined using the balance
values. As a simple illustration of this ‘rough’ balancing,
assume the entire graph is a cycle (v1, v2, . . . , vn, v1)
with c(vn, v1) = b ≥ n and c(vi, vi+1) = 1 for i ∈ [n−1].
Thus, β(e) = b for every arc. Setting π(i) = ib/n for all
i ∈ [n], we get cπ(vi, vi+1) = 1 + b/n for i ∈ [n− 1] and
cπ(vn, v1) = b/n, making the graph 2-balanced.

The strongly polynomial algorithm asserted in The-
orem 3.1 is given in Section 3.4. Here, the input is
assumed to be a graph with a 7n2-min-balanced cost-
function. How can we benefit from this ‘rough’ balance
of the input? The weakly polynomial algorithm consists

of O
(

log(nCmax/Cmin)
λ−1

)
calls of Small-Cycles. Each

call of Small-Cycles has as input all of the arcs of
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A that have yet to be contracted. For this reason, the
running time is O(m

√
n) per call. However, when run-

ning Small-Cycles in which the lower bound is L, it is
possible to restrict attention to arcs e with c(e) ≤ 2nL.
We refer to such arcs as ‘active’. If the input is assumed
to be a 7n2-min-balanced cost-function, then each arc is

active for O
(

logn
λ−1

)
calls of Small-Cycles prior to be-

ing contracted. Thus each arc contributes O
(√

n logn
λ−1

)
to the total running time.

In the weakly polynomial algorithm, the parameter
L giving a lower bound on the minimum reduced cost
of non-contracted arcs increases by a factor λ in each
iteration. To avoid the dependence on Cmax/Cmin,
in the strongly polynomial algorithm this value may
sometimes ‘jump’ by large amounts in cases where there
are no currently active arcs.

An important technical detail is the maintenance of
the reduced costs. In every iteration, we only directly
maintain cπ(e) for the current active arcs. Querying the
reduced cost of a newly activated arc is nontrivial, since
one or both of its endpoints may have been part of one
or more contracted cycles, each of which leads to a new
node in the contracted graph. To compute the potential
of an original node i, we need to add to the potential
of node i the potentials of every contracted node j that
contains node i. This requires a new extension of the
Union-Find datastructure, called Union-Find-Increase
by incorporating a new ‘increase’ operation. This is
described in the full version.

Preprocessing and contractions We will use
contractions several times during our algorithms.
Whenever a set S is contracted, we let s be the con-
tracted node, and we set the potential πs = 0. For each
arc with one endpoint in S, we keep the same reduced
cost as immediately before the contraction.

On multiple occasions we will need the subroutine
Strongly-connected(N,A) that implements Tar-
jan’s algorithm [25] to find the strongly connected com-
ponents of the directed graph (N,A) in time O(|N | +
|A|). The output includes the strongly connected com-
ponents (N1, A1), (N2, A2), . . . , (Nk, Ak) in the topo-
logical order, namely, for an arc (u, v) ∈ A such that
u ∈ Ni, v ∈ Nj , it must hold that i ≤ j.

In Theorem 3.1, the input is a nonnegative integer
cost function. For our algorithm, it is more convenient
to assume a strictly positive cost function. We now show
how the nonnegative case can be reduced to the strictly
positive case by a simple O(m) time preprocessing. Let
Cmax denote the largest value of the nonnegative integer
cost function.

We first call Strongly-connected(N,A0) on the

subgraph of 0-cost arcs A0. We contract all strongly
connected components, and keep the notation G =
(N,A) for the contracted graph, where the output
of the subroutine gives a topological ordering N =
{v1, v2, . . . , vn} such that for every 0-cost arc (vi, vj),
we must have i < j. Let us set π(vi) = −i/n. Then, it
is easy to see that cπ(e) ≥ 1/n for every e ∈ A.

We then replace the cost function c by ncπ; this can
be done in O(m) time, since a multiplication by n can be
implemented by a bit-shift by recalling the assumption
that n is a power of 2. This finishes the description of
the preprocessing step, after which we obtain an integer
cost function with 1 ≤ c(e) ≤ nCmax+n for every e ∈ A.

3.1 Approximate minimum-mean cycles: Gold-
berg’s algorithm The next theorem summarizes the
properties of the subroutine Refine in Goldberg’s pa-
per [11].

Theorem 3.2. ([11]) Let G = (N,A, c) be a directed
graph with an integer cost function c ∈ ZA such that
c(e) ≥ −1 for all e ∈ A, and |N | = n, |A| = m. Then,
in O(m

√
n) time, one can either find a negative cost

cycle C ⊆ A, or an integer valued potential vector π
such that cπ(e) ≥ 0 for all e ∈ A.

Goldberg uses this subroutine in a scaling frame-
work to either find a negative cycle or a potential with
nonnegative reduced cost. This subroutine runs in time
O(
√
nm logU), where U is the largest absolute value of

the most negative arc cost in the integer cost function.
We slightly strengthen Goldberg’s result to implement
the following subroutine.

Subroutine Small-cycles
Input: A directed graph G = (N,A, c) with a cost
function c ∈ QA+, and L,D ∈ Q+ such that c(e) ≥ L
for all e ∈ A.
Output: A partition P = (P1, P2, . . . , Pk) of the
node set N and a potential vector π ∈ QN such
that

(i) For every i ∈ [k], cπ(e) ≥ L for every e ∈
A[Pi], and Pi is strongly connected in the
subgraph of arcs {e ∈ A[Pi] : L ≤ cπ(e) ≤
L+ 2D}.

(ii) cπ(e) ≥ L+D for all e ∈ A \
(
∪i∈[k]A[Pi]

)
,

(iii) −|N |D ≤ π(v) ≤ 0, and π(v) is an integer
multiple of D for all v ∈ N .

Lemma 3.1. Small-cycles (L,D,N,A, c) can be im-
plemented in O(|A|

√
|N |) time.
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The proof is given in the full version. We use Goldberg’s

algorithm for the cost function c̄(e) =
⌊
c(e)−L
D

⌋
−1. The

main difference is that in case a negative cycle is found,
the original algorithm terminates, whereas we proceed
after contracting the node set of the cycle; these cycles
will be used to construct the output partition classes Pi.

3.2 A simple weakly polynomial variant We
now present Algorithm 1, a weakly polynomial

O
(
m
√
n log(nCmax/Cmin)

λ−1

)
time algorithm. Here, Cmax

and Cmin denote the largest and smallest values of the
strictly positive cost function, and λ = (ξ + 1)/2 > 1 as
in Theorem 3.1.

We initialize L1 = Cmin. Every iteration calls
Small-Cycles for the current value of Lt and Dt =
(λ−1)Lt. In Step 6, we contract each subset (some or all
of which may be singletons) in the partition Pt returned
by the subroutine, and iterate with the returned reduced
cost, setting the new value Lt+1 = Lt +Dt = λLt.

Algorithm 1 Simple-min-balance

Input: A strongly connected directed graph G =
(N,A, c) with positive arc costs c ∈ QA++, and
ξ > 1, λ = (ξ + 1)/2.

Output: A potential π ∈ QN such that cπ is ξ-min-
balanced.

1: (N̂1, Â1, ĉ1)← (N,A, c) ; t← 1 ;
2: L1 ← mine∈A c(e) ;
3: while |N̂t| > 1 do
4: Dt ← (λ− 1)Lt ;
5: (Pt, pt)← Small-Cycles(Lt, Dt, N̂t, Ât, ĉt) ;
6: (N̂t+1, Ât+1, ĉt+1)← (N̂t, Ât, ĉ

pt
t )/Pt ;

7: Lt+1 ← λLt ; t← t+ 1 ;

8: Uncontract (N̂t, Ât, ĉt), and compute the overall
potential π : N → Q ;

9: return π.

We let (N̂t, Ât) denote the contracted graph at
iteration t. The algorithm terminates when N̂t has a
single node only, at iteration t = T .

Uncontraction In line 8, we uncontract all sets in
the reverse order of contractions. We start by setting
π = pT . Assume a set S was contracted to a node s
in iteration t, and we have uncontracted all sets from
iterations t+1, . . . , T . When uncontracting S, for every
v ∈ S we set π(v) = pt(v)+π(s), i.e., the potential right
before contraction, plus the potential of s accumulated
during the uncontraction steps. This takes time O(n′)
where n′ is the total size of all sets contracted during
the algorithm; it is easy to bound n′ ≤ 2n. Thus, the
total time for uncontraction is O(n).

Lemma 3.2. Given a strongly connected digraph with
positive arc costs and ξ > 1, ξ = O(1), and λ = (ξ +
1)/2, Algorithm 1 finds a ξ-min-balanced cost function

in O
(
m
√
n log(nCmax/Cmin)

λ−1

)
iterations, where Cmin and

Cmax are the smallest and largest arc costs in the input.

Proof. At initialization, L1 = Cmin, and Lt increases
by a factor λ in every iteration. At every iteration, we
can extend the cost function ĉt to the original arc set
A: for an arc e contracted in an earlier iteration τ < t,
we let ĉt(e) = ĉτ (e) represent the value right before the
contraction. It is easy to see that this extension of ĉt to
A gives a valid reduced cost of c.

Throughout, we have that Lt ≤ ĉt(e) for all e ∈ Ât,
and ĉt(e) ≥ 0 for all contracted arcs. Thus, for any cycle
C ⊆ A that contains some non-contracted arcs in Ât,
we have 2Lt ≤ ĉt(C) = c(C) ≤ nCmax. Consequently,
we have Lt ≤ nCmax/2 throughout, implying the
bound O(logλ(nCmax/Cmin)). For λ = O(1), this gives

O
(

log(nCmax/Cmin)
λ−1

)
.

As explained above, the final uncontraction and
computing π can be implemented in O(n) time.

To show that the final cπ is ξ-min-balanced, con-
sider an arc e ∈ A, and assume it was contracted in iter-
ation t, that is, e ∈ A[Pj ] for a component Pj of the par-
tition Pt. In particular, cπ(e) = cpt(e) ≥ Lt. The set Pj
is strongly connected in the subgraph of arcs of reduced
cost ≤ Lt+2Dt = ξLt. Thus, at iteration t, Pj contains
a cycle C with e ∈ C such that ĉt(f) ≤ ξLt for all f ∈ C.
This cycle may contain nodes that were contracted dur-
ing previous iterations. Every component previously
contracted contains a strongly connected subgraph of
arcs with costs < λLt, noting that the arc costs do not
change anymore after contraction. Thus, when uncon-
tracting a node we can extend C to a cycle of arc costs
< ξLt. Hence, we can obtain a cycle C ′ in the original
graph G with e ∈ C ′ and cπ(f) ≤ ξLt ≤ ξcπ(e) for all
f ∈ C ′.

The algorithm uses operations permitted in the word
RAM model for ξ = 3 and λ = 2. For smaller
values of λ, the multiplication by λ in Step 7 may not
be a permissible operation of the word RAM model.
The strongly polynomial variant Algorithm 3 in in
Section 3.4 includes modifications to conform the word
RAM model; these are omitted here for simplicity.

3.3 A quick algorithm for rough balancing
In this section, we present a subroutine Rough-
balance(N,A, c) that finds a potential π ∈ QN such
that cπ is 7n2-min-balanced. As mentioned previously,
this will be an important preprocessing for the strongly
polynomial algorithm in Section 3.4. The running time
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can be stated as follows.

Lemma 3.3. Let G = (N,A, c) be a strongly con-
nected directed graph with c ∈ QN++. Then, in time

O(m log2 n), we can find a potential π ∈ QN such that
cπ is 7n2-min-balanced, where n = |N | and m = |A|.

Given G = (N,A, c) with c ∈ RA+, and r > 0, we
let G[≤ r] denote the subgraph of G formed by the arcs
e ∈ A with c(e) ≤ r. Similarly, we let G[< r] denote the
subgraph with arcs c(e) < r. For every e ∈ A, we define
β(e) ∈ Q++ as the smallest value r such that G[≤ r]
contains a directed cycle C with e ∈ C. We call β(e)
the balance value of e. Clearly, G is ξ-min-balanced if
and only if β(e) ≤ ξc(e) for each e ∈ A.

The algorithm proceeds in two stages. First, we
present Find-Balance(N,A, c) (Section 3.3.1) that
determines the balance value β(e) for each arc in
e ∈ A. The main algorithm Rough-Balance(N,A, c)
(Section 3.3.2) relies on these values to find a potential
π ∈ QN such that cπ is 7n2-balanced.

3.3.1 Determining the balance values
Algorithm 2 presents the subroutine Find-
Balance(N,A, c). We first sort the arcs in non-
decreasing order of cost; we let ei denote the i-th
arc in this order. First, in lines 2-7, we identify
the smallest value r = c(eh) such that the strongly
connected components of G[≤ r] contain at least
half of the arcs. This can be found via a binary
search on the c(ei) values, and repeatedly calling
the subroutine Strongly-Connected. We let
(U1, F1), (U2, F2), . . . , (Uk, Fk) denote the strongly con-
nected components of G[< r] and (N1, A1), (N2, A2),
. . . , (Ns, As) denote the strongly connected components
of G[≤ r] in lines 9 and 10. These are two partitions
of N , i.e., N = ∪ki=1Ui = ∪sj=1Nj . Also note that
Fi ⊆ A[Ui] and Aj ⊆ A[Nj ], but these containments
may be strict. (We note that there is no need for
additional calls to Strongly-Connected in lines 9
and 10. These partitions have already been found
during the binary search, with the possible exceptions
of h = 1, in which case k = |N | and the Ui’s are
all singletons, and h = m, in which case s = 1 and
(N1, A1) = (N,A).)

The partition (U1, U2, . . . , Uk) is a refinement of
the partition (N1, N2, . . . , Ns), that is, each set Ui is
a subset of some set Nj . For all arcs e ∈ A[Nj ] \(⋃

i:Ui⊆Nj Fi

)
, we set β(e) = max{r, c(e)} in line 11.

We make k + 1 recursive calls to Find-Balance.
For each i ∈ [k], we call the subroutine for the subgraph
(Ui, Fi), and obtain balance values βi : Fi → Q.
Further, we call the subroutine for the k-node graph Ĝ
obtained by contracting all sets Nj , returning balance

Algorithm 2 Find-balance

Input: A strongly connected directed graph G =
(N,A, c) with c ∈ QA++.

Output: A function β : A → Q giving the balance
value β(e) of each arc e ∈ A.

1: Sort the arc set A in increasing order of the cost
such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em) ;

2: `← 0, h← m ;
3: while h− ` > 1 do
4: t←

⌈
`+h

2

⌉
;

5: {(N1, A1), (N2, A2), . . . , (Nk, Ak)}
←Strongly-Connected(G[≤ c(et)]) ;

6: if
∑k
i=1 |Ai| ≥ |A|/2 then h← t ;

7: else `← t ;

8: r ← c(eh) ;
9: {(U1, F1), (U2, F2), . . . , (Uk, Fk)}
← Strongly-Connected(G[< r]) ;

10: {(N1, A1), (N2, A2), . . . , (Ns, As)}
← Strongly-Connected(G[≤ r]) ;

11: for e ∈
(⋃s

j=1A[Ni]
)
\
(⋃k

i=1 Fi

)
do

β(e)← max{r, c(e)} ;

12: for i = 1, . . . , k do
13: if |Ui| > 1 then
14: βi ←Find-Balance(Ui, Fi, c|Fi) ;
15: for e ∈ Fi do β(e)← βi(e) ;

16: Obtain Ĝ = (N̂ , Â, ĉ) by contracting Nj to v̂j for all
j ∈ [s].

17: b̂← Find-Balance(Ĝ) ;

18: for e ∈ A \
(⋃s

j=1A[Nj ]
)
do β(e)← β̂(ê), where ê

is the contracted image of e ;

19: return β.

values β̂ : Â→ Q. If e ∈ Fi for some i ∈ [k], then we set
β(e) = βi(e). If e ∈ A \

(
∪sj=1A[Nj ]

)
, then we get β(e)

as the value obtained from the recursive call to Ĝ for
the contracted image of e. We show that these correctly
determines the balance values.

Lemma 3.4. Algorithm 2 correctly computes the bal-
ance values in G in time O(m log2 n).

Proof. First, we show correctness by induction on |N |.
Let us start with arcs e ∈ A[Nj ]\

(⋃
i:Ui⊆Nj Fi

)
for some

j ∈ [s], where we set β(e) = max{r, c(e)}. We show that
this is indeed the correct choice. First, e is not contained
in any cycle of G[< r], and thus β(e) ≥ r. Second,
Aj ∪ {e} contains a cycle C with e ∈ C, and c(f) ≤ r
for any f 6= e, since (Nj , Aj) is strongly connected in
G[≤ r]. Hence, β(e) ≤ max{r, c(e)}.

If e ∈ Fi for some i ∈ [k], we set β(e) = βi(e)
from the recursive call to (Ui, Fi). This is correct since
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βi(e) < r; hence, arcs outside Fi cannot contribute to a
cycle with smaller maximum cost.

Finally, let e ∈ A \
(⋃s

j=1A[Nj ]
)

, and let ê ∈ Â

be the image of e in the contracted graph Ĝ. By the
inductive hypothesis, in the recursive call to Ĝ, we
find a value β̂(ê) such that there exists a cycle Ĉ with

ê ∈ Ĉ ⊆ Â, ĉ(f̂) ≤ β̂(ê) for all f̂ ∈ Ĉ. Furthermore,

β̂(ê) is the smallest value with this property. This cycle
can be mapped back to a cycle C ⊆ A by connecting the
endpoints of the pre-images of the arcs in Ĉ via paths
in Fj . Then, β(e) = β̂(ê) follows from the following
facts: each (Ni, Ai) is strongly connected, all arc costs

in Ai are ≤ r, and β̂(ê) > r, since every cycle in Ĝ must
contain an arc of cost greater than r.

We now turn to the recursive estimation of the
running time bound. Recall that log x refers to base 2
logarithm. The binary search makes at most logm calls
to Strongly-Connected for graphs with n nodes and
at most m arcs. Since the input graph is strongly
connected, we have n ≤ m. Consequently, the running
time to these calls is O((n + m) logm) = O(m logm).
This dominates the running time of all operations
except the recursive calls. Thus, there exists a constant
α > 0 such that the running time of all operations
except the recursive calls can be bounded as αm logm.

By induction on m, we show that the total running
time is αm log2m. Let mi = |Fi| for i ∈ [k]. By
induction, if |Ui| > 1, then the running time of the
recursive call to G[Ui] is αmi log2mi. By the choice of

r,
∑k
i=1mi < m/2. Therefore the total running time

of these calls is ≤ α(m/2) log2(m/2) = α(m/2)(−1 +
logm)2.

Also by the choice of r, the graph Ĝ has ≤ m/2
arcs; thus, the same bound applies for the running time
of the recursive call to Ĝ. Thus the total running time
is at most

αm(−1 + logm)2 + αm logm < αm log2m.

Finally, the running time bound O(m log2 n) follows
since we assumed the graph is simple, and thus logm =
O(log n).

3.3.2 Constructing the potential We now de-
scribe the algorithm Rough-balance(N,A, c). We
first obtain the balance values β(e) by running Find-
Balance(N,A, c).

To motivate the algorithm, we first illustrate how
how one might roughly balance the arcs e ∈ A[Nj ] \(⋃

i:Ui⊆Nj Fi

)
in the Find-Balance algorithm. Recall

that (Nj , Aj) are the strongly connected component of

G[≤ r], and (Ui, Fi), i ∈ [k′] are the strongly connected
components of G[< r] with Ui ⊆ Nj . Assume these
components are in the topological order, that is, for
every (u, v) ∈ A with u ∈ Ui and v ∈ Ui′ and c(e) < r
we have i ≤ i′.

Every arc e ∈ A[Nj ] \
(⋃

i:Ui⊆Nj Fi

)
has β(e) =

max{r, c(e)}. If we set π(v) by ri/n for every v ∈ Ui
and i ∈ [k′], then for every arc e ∈ A[Nj ], c(e) < r,
the reduced cost will become cπ(e) ≥ r/n. The reduced
cost cπ(e) may also decrease for arcs e = (u, v) where
u ∈ Ui and v ∈ Ui′ for i > i′; however, c(e) ≥ r for
all such arcs, and the amount of decrease is bounded by
(n − 1)r/n. Hence, we will have cπ(e) ≥ r/n also for
these arcs.

There are two problematic issues with extending
this idea to include the remaining arcs. One is correct-
ness: potential adjustments made for different values of
r may interfere: in the above example, such adjustments
would be done inside each set Ui for lower r values, and
could even result in negative reduced costs. The other
issue is running time: we cannot afford to make such a
potential change for each different β(e) values, as there
may be Ω(n) such values. To address both these prob-
lems, we devise an iterative scheme that makes adjust-
ments for a subset of β(e) values at each iteration.

In iteration t = 1, 2, . . . , T , we maintain a contrac-
tion (N̂t, Ât) of the input graph (N,A), as well as an
‘active’ arc set Ft ⊆ Ât. We handle contractions and
maintain a reduced cost cπ as in Section 3.2. That is,
the final reduced cost of an arc e will be equal to its
reduced cost immediately before its endpoints got con-
tracted into the same node. The algorithm terminates
at iteration T = t when N̂T becomes a singleton. Then
we uncontract and obtain the overall potential and re-
duced cost in the original graph in time O(n). Through-
out, we identify an arc e ∈ A with its images in the At
sets; that is, A = Â1 ⊇ . . . ⊇ ÂT .

For each iteration t, we define a threshold value rt,
defined as follows.
(3.2)

r1 := min{β(e) : e ∈ A} ,

rt+1 :=

{
2nrt , if ∃e ∈ A : rt < β(e) ≤ 2nrt ,

min{β(e) : e ∈ A, β(e) > rt} , otherwise.

The sequence stops with t = T once rt ≥ maxe∈A β(e).
Note that rt ≥ 2nrt−1 for all t ∈ [T ]. We say that t is
regular, if rt = 2nrt−1, and t is special, if rt > 2nrt−1;
this means that rt = β(e) for some arc e ∈ A, and there
is no arc f ∈ A with rt−1 < β(f) < rt.

We set (N̂1, Â1) = (N,A) in the first iteration.
For both regular and special iterations for t ≥ 2, the
subgraph (N̂t, Ât) is obtained from (N̂t−1, Ât−1) by
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contracting the strongly connected components of arcs
with c(e) ≤ rt−1; note that we use the original cost
function c for this choice. For obtaining the contraction
(N̂t, Ât) from (N̂t−1, Ât−1), it suffices to consider the
arcs such that β(e) = rt−1.

We next define the subset of active arcs Ft ⊆ Ât.
This will be different for regular and special iterations.
If t is regular, then we let

Ft :=
{
e ∈ Ât : c(e) ≤ rt−1 < β(e) ≤ rt

}
,

and if t is special, then

Ft :=
{
e ∈ Ât : c(e) < β(e) = rt

}
.

In both cases, the graph (N̂t, Ft) is acyclic. Indeed,
any cycle containing e ∈ Ft must include an arc of
cost c(f) ≥ β(e). For regular iterations, Ft contains
no such arcs, as they would have c(f) > rt−1. For
special iterations, it would mean c(f) ≥ rt = β(e), a
contradiction again.

Recall that N̂t(Ft) denotes the subset of nodes that
have at least one incident arc in Ft. We construct
a topological ordering of (N̂t(Ft), Ft) as N̂t(Ft) =
{v1, v2, . . . , vs} such that if (vi, vj) ∈ Ft, then i < j
must hold. We now define

(3.3) pt(vj) =
jrt
3n2

, j ∈ [s] ,

and increase π(vj) by pt(vj) for every j ∈ [s].

We note that from (N̂t−1, Ât−1), we can identify
(N̂t(Ft), Ft) and the ordering all at once, by running
Strongly-Connected(N̂t−1(A′′t−1), A′′t−1), where

A′′t−1 = {e ∈ Ât−1 : β(e) = rt−1} ∪ Ft.
After the final iteration, we uncontract all con-

tracted sets in the reverse order, and obtain the po-
tential π in the original graph. This finishes the de-
scription of Rough-balance, the subroutine asserted
in Lemma 3.3.

Proof of Lemma 3.3. We need to show that the
potential π defines a 7n2-min-balanced potential, and
that the entire procedure can be implemented in time
O(m log2 n).

We start with the proof of balancedness; the key
will be the following statement.

Claim 3.1. Consider any e ∈ A, and let τ ∈ [T ] such
that rτ−1 < β(e) ≤ rτ . Then,

rτ
6n2
≤ cπ(e) ≤ 7rτ

6
.

Proof. The arc e will be contracted in iteration τ + 1.
That is, e ∈ Âτ , but the two endpoints of e coincide

in N̂t+1. Hence, the final value of cπ(e) will be the one
seen in iteration τ .

We analyze the contribution of each potential pt,
t ∈ [τ ] to the reduced cost cπ(e). First, we show the
upper bound. By the definition of pt, we can bound
the potential change caused by pt as |cpt(e) − c(e)| ≤
(n− 1)rt/(3n

2). Thus, we obtain
(3.4)

|cπ(e)− c(e)| ≤ n− 1

3n2
·
τ∑
t=1

rt

≤ n− 1

3n2
· rτ

(
1 +

1

2n
+

1

(2n)2
+ . . .

)
=

2(n− 1)

3(2n− 1)n
· rτ <

rτ
3n

,

using that rt ≥ 2nrt−1 for all t ∈ [T ]. The upper bound
follows by

cπ(e) ≤ c(e) +
rτ
3n
≤ rτ +

rτ
3n
≤ 7rτ

6
,

using that n ≥ 2.
We distinguish two cases for the lower bound.
Case I: e ∈ Fτ . By construction, cpτ (e) ≥ c(e) +

rτ/(3n
2) for all arcs in Fτ . As in (3.4), the potentials

pt for t ∈ [τ − 1] may decrease the reduced cost of e
by at most rτ−1/(3n) ≤ rτ/(6n

2). The claimed bound
follows.

Case II: e /∈ Fτ . First, we claim that c(e) ≥
rτ/(2n). Indeed, if t is a special value, then e /∈ Fτ
means c(e) = β(e) = rτ , and if t is a regular value, then
c(e) ≥ rτ−1 = rτ/(2n). Using (3.4), we see that

cπ(e) ≥ c(e)− rτ
3n
≥ rτ

2n
− rτ

3n
=
rτ
6n

,

yielding a stronger lower bound.

Let us now show that cπ is 7n2-min-balanced.
Consider any arc e ∈ A, and let τ ∈ [T ] such that
rτ−1 < β(e) ≤ rτ . Let C ⊆ A be a cycle such that e ∈ C
and c(f) ≤ β(e) for all f ∈ C. Claim 3.1 implies that
cπ(e) ≥ rτ/(6n

2), and at the same time, cπ(f) ≤ 7rτ/6
for every f ∈ C. The desired balancedness property
follows. �

Running time bound The initial call to Find-
Balance(N,A, c) takes O(m log2 n) time accord-
ing to Lemma 3.4. The dominant terms in the
running time bound are the calls to Strongly-
Connected(Nt−1(A′′t−1), A′′t−1), where A′′t−1 = {e ∈
Ât−1 : β(e) = rt−1} ∪ Ft. Let mt−1 = |A′′t−1|. We

have
∑T−1
i=0 mt ≤ 2m, since every arc can participate in

at most two sets A′′t−1. Hence, the calls to Strongly-

Connected can be upper bounded as O(
∑T−1
i=1 mi) =

O(m).
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We do not need to maintain the entire contracted
graph (N̂t, Ât), but only the arc sets Ft and A′′t , as
well as the sets of incidents nodes N ′t and N ′′t . These
can be easily obtained by collecting all endnodes of the
respective arc sets. The potential update in iteration
t requires O(|N ′t |). All these operations take altogether
O(m) time. The running time of the final uncontraction
is O(n) similarly to the argument in Section 3.2.

This subroutine can be implemented in the word
RAM model. Whereas the potential values are not
integers, they will always have the same denominator
3n2. Multiplying all costs initially by 3n2, we can
work throughout with integer costs and potentials, and
the algorithm only uses additions, comparisons, and
multiplications/divisions by 2. Due to the assumption
that n is a power of 2, the initial multiplication takes
O(1) time per arc.

3.4 The strongly polynomial algorithm We now
present the main algorithm as stated in Theorem 3.1.
Since ξ-min-balancedness implies ξ′-min-balancedness
for any ξ′ ≥ ξ, we can assume without loss of generality
that λ = 1 + 1/2ρ for some ρ ∈ Z++. Replacing λ by
1 + 1/2ρ such that 1 + 1/2ρ ≤ λ < 1 + 1/2ρ−1 does not
affect the claimed asymptotic running time, and such
a replacement is beneficial for the implementation in
the RAM model. Thus, in this section we will assume
λ = 1 + 1/2ρ, and ξ = 2λ − 1 = 1 + 1/2ρ−1 for some
ρ ∈ Z+. Note that ξ = 3, λ = 2 corresponds to ρ = 0.

Given the initial input graph G = (N,A, c) with
integer arc costs, we first perform preprocessing to con-
tract 0-cycles and to ensure that all arc costs are pos-
itive integers. Next, we apply the subroutine Rough-
balance to find a 7n2-min-balanced reduced cost func-
tion. We assume that the input of Algorithm 3 is a pos-
itive and 7n2-min-balanced cost function c. If needed,
we multiply all arc costs by 3n2 so that all reduced costs
are integral. Recall that this takes only O(1) time per
arc due to the assumption that n is a power of 2.

Algorithm 3 is similar to the weakly polynomial
Algorithm 1. The two crucial differences are that (a)
Algorithm 3 may ‘jump’ over irrelevant values of L, and
(b) the subroutine Small-Cycles is called only for a
subset of ‘active’ arcs. A more detailed list of differences
follows.

• The input digraph is required to be 7n2-balanced
subgraph.

• At the beginning of the algorithm, we sort the arcs
in the increasing order of costs c(e).

• In iteration t, we denote the contracted image
of the original graph and the relabelled cost as

(N̂t, Ât, ĉt). However, we only maintain the ĉt(e)
values explicitly for a subset of active arcs Ft ⊆ Ât.
This is the set of arcs with c(e) ≤ (n + 1)λLt; we
emphasize that the definition uses the input cost of
e (for Algorithm 3) and not the relabelled cost.

• If an arc e first becomes active at iteration t, the
subroutine Get-Cost(e) obtains the reduced cost
ĉt(e). For all other arcs, ĉt(e) is defined, but not
explicitly maintained in the algorithm.

• We call the subroutine Small-Cycles for the
subgraph (N̂t(Ft), Ft). This determines the node
potential pt and the partition Pt for contraction.
With a slight abuse of notation, the node potentials
pt are extended to the entire node set N̂t, by setting
pt(v) = 0 for v ∈ N̂t \ N̂t(Ft). Similarly, in line 7,
the costs ĉt+1 and ĉptt are only updated for the arc
set F̂ , the contracted image of Ft.

• Algorithm 1 maintains Dt = (λ − 1)Lt in every
iteration t. In contrast, in Algorithm 3 we set
Dt = Lt/2

ρ = (λ − 1)Lt whenever t − 1 is an
integer multiple of 2ρ, and maintain the same Dt

value over the subsequent 2ρ iterations. This is for
the sake of staying within the word RAM model;
in a more permissive arithmetic model, we could
maintain Dt = (λ − 1)Lt in every iteration. Note
that for ρ = 0 and λ = 2, these two choices coincide.

• The choice of Lt+1 again depends on the value
of t. If t is not an integer multiple of 2ρ, then
we simply choose Lt+1 = Lt + Dt. If t is an
integer multiple of 2ρ, then we use the selection in
line 9. Our goal with this selection is to maintain
ĉt+1(e) ≥ Lt+1 for all e ∈ Ât; Lemma 3.5 below
shows that ĉt+1(e) ≥ c(e)− nλLt.

• In line 13, we define Ft+1 by taking the contracted
image F̂ of Ft, and adding all further arcs with
c(e) ≤ (n + 1)λLt+1. This can be implemented
straightforwardly using the initial sorting of the arc
costs. For all new arcs, Get-Cost(e) in line 14
computes ĉt+1(e).

Lemma 3.5. Let τ ∈ [T ] be an iteration such that in all
previous iterations t ∈ [τ ], ĉt(e) ≥ Lt was valid for all
e ∈ Ft. Then, |ĉτ+1(e)− c(e)| ≤ nλLτ for every e ∈ Ât.

Proof. The condition guarrantees that the input to
Small-Cycles at all iterations t ≤ τ satisfied the
requirement on the arc costs. The potential pt found
by Small-Cycles has values −|N̂t|Dt ≤ pt(v) ≤ 0.
Therefore, for each e ∈ Ât, |ĉτ+1(e)−c(e)| ≤ n

∑τ
t=1Dt.
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Algorithm 3 Min-Balance

Input: A strongly connected directed graph G = (N,A, c) with a 7n2-balanced cost vector c ∈ ZA++, ρ ∈ Z+,
such that λ = 1 + 1/2ρ and ξ = 1 + 1/2ρ−1.

Output: A potential π ∈ QN such that cπ is ξ-min-balanced.
1: Sort all arcs in the increasing order of costs as c(e1) ≤ c(e2) ≤ . . . ≤ c(em) ;
2: (N̂1, Â1, ĉ1)← (N,A, c) ; t← 1 ;
3: L1 ← bc(e1)c2, D1 ← L1/2

ρ ;
4: F1 ← {e ∈ A : c(e) ≤ (n+ 1)λL1} ;
5: while |N̂t| > 1 do
6: (Pt, pt)← Small-Cycles(Lt, Dt, N̂t(Ft), Ft, ĉt) ;
7: (N̂t+1, F̂ , ĉt+1)← (N̂t, Ft, ĉ

pt
t )/Pt ;

8: if t is an integer multiple of 2ρ then

9: Lt+1 ← max
{
Lt +Dt,

⌊
mine∈Ât+1

c(e)− nλLt
⌋

2

}
;

10: Dt+1 ← Lt+1/2
ρ ;

11: else
12: Lt+1 ← Lt +Dt ; Dt+1 ← Dt ;

13: Ft+1 ← F̂ ∪ {e ∈ Ât+1 : (n+ 1)λLt < c(e) ≤ (n+ 1)λLt+1} ;
14: for e ∈ Ft+1 \ Ft do ĉt+1(e)←Get-Cost(e) ;

15: Uncontract (N̂t, Ât, ĉt), and compute the overall potential π : N → Q .
16: return π.

We show that
∑τ
t=1Dt ≤ λLτ . Indeed, Lt+1 ≥

Lt + Dt in every iteration, implying
∑τ−1
t=1 Dt ≤ Lτ ;

and Dτ ≤ Lτ/2ρ = (λ− 1)Lτ .

Lemma 3.6. For every iteration t ∈ [T ] in Algorithm 3,
ĉt(e) ≥ Lt for all e ∈ Ât. The final reduced cost function
cπ is ξ-min-balanced. Further, every arc e ∈ A with
c(e) < Lt/(7n

3) was contracted before iteration t.

Proof. Let us start with the first claim. The proof is
by induction. For t = 1, ĉ1(e) ≥ L1 is true for every
e ∈ A = Â1 by the definition of L1 = bc(e1)c2. Assume
the claim was true for all 1 ≤ t′ ≤ t; we show it for t+1.

If we selected the value Lt+1 = bmine∈Ât+1
c(e) −

nλLtc2, then the statement follows from Lemma 3.5.
Let us next assume we selected Lt+1 = Lt + Dt. If
e ∈ F̂ , i.e., the contracted image of Ft, then ĉt+1(e) ≥
Lt + Dt = Lt+1 is guaranteed by Small-Cycles. Let
e ∈ Ât+1 \Ft, i.e., c(e) > (n+ 1)λLt. Then, Lemma 3.5
shows that ĉt+1(e) > λLt ≥ Lt+1.

The ξ-min-balancedness property of the final re-
duced cost cπ follows as in Lemma 3.2 for the weakly
polynomial Algorithm 1.

Consider now an arc e ∈ A with c(e) < Lt/(7n
3).

By the 7n2-min-balancedness of the input cost function
c, there exists a cycle C ⊆ A such that c(f) ≤ 7n2c(e)
for all f ∈ C. The final reduced cost cπ is nonnegative,
and therefore

cπ(e) ≤ cπ(C) = c(C) ≤ 7n3c(e) < Lt .

Recall that the final reduced cost cπ(e) equals ĉt′(e) for
the iteration t′ when f was contracted. Since ĉt(f) ≥ Lt
for all f ∈ Ât, it follows that t′ < t, as required.

In the full version we show that the overall running
time of the operations Get-Cost(e) can be bounded
as O(mα(m,n)) for the inverse Ackermann function
α(m,n). We need one more claim that shows the
geometric increase of Lt.

Lemma 3.7. For any iteration t′ ≥ 1, we have Lt′+2ρ ≥
2Lt′ .

Proof. Let t = t′ + 2ρ. Assume first 2ρ|t′ − 1. Then,
Dt′ = Lt′/2

ρ, and we have Dt′′ = Dt′ for all t′′ ∈
[t′, t − 1]. Consequently, Lt ≥ Lt′ + 2ρDt′ = 2Lt′ . The
inequality may be strict if in iteration t− 1 we defined
Lt as the second term in (9).

Assume now t′ = t0 + k such that 2ρ|t0 − 1 and
k ∈ [1, 2ρ−1]. Then, Lt′ = Lt0(1+k/2ρ), Lt0+2ρ ≥ 2Lt0 ,
and Lt = Lt0+2ρ(1 + k/2ρ) ≥ 2Lt0(1 + k/2ρ), thus, we
again have Lt ≥ 2Lt′ .

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. The running time bound We
start by contracting all strongly connected components
of 0-cost arcs in time O(m), and run the algorithm
Rough-Balance to find a 7n2-balanced cost function
in time O(m log2 n) (Lemma 3.3). We now turn the
analysis of Algorithm 3. Let mt = |Ft| denote the
number of active arcs in iteration t. The running
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time of Small-Cycles in iteration t is bounded as
min{O(1), O(mt

√
n)}. The term O(1) is needed since

there may be some ‘idle’ iterations without any active
arcs, that is, mt = 0. In such a case, within the next 2ρ

iterations Lt will be updated as in line 9, enforcing new
active arcs. Thus, the number ‘idle’ iterations without
active arcs can be bounded as m2ρ, since every arc can
give the minimum value in line 9 at most once. The total
running time of the ‘idle’ iterations can be bounded as
O(m/(λ−1)); this will be dominated by the other terms.

Let us now focus on the iterations containing active
arcs. We show the following bound:

(3.5)

T∑
t=1

mt = O

(
m log n

λ− 1

)
.

Consider any arc e ∈ A. Let t1 be the first and t2 be
the last iteration such that e ∈ Ft. By definition, t1 is
the smallest value such that c(e) ≤ (n + 1)λLt1 , and
by the last part of Lemma 3.6 Lt2/(7n

3) ≤ c(e). Thus,
Lt2 ≤ 14n4Lt1 . Lemma 3.7 shows that Lt increases by
a factor 2 in every 2ρ = 1/(λ − 1) iterations. Hence,

t2 − t1 ≤ log(14n4)
λ−1 , implying (3.5).

Hence, the total running time of the calls to

Small-Cycles is bounded as O
(
m
√
n logn
λ−1

)
. The time

of contractions and cost updates can be bounded as
O(mα(m,n)) using the Union-Find-Increase data struc-
ture, as shown in the full version. The final uncontrac-
tion takes O(n). The overall running time bound fol-
lows.

Implementation in the word RAM model
The subroutines Rough-Balance and Small-Cycles
are both implementable in the word RAM model. Al-
gorithm 3 only uses operations permitted in the model:
we only multiply by factors of 2, and b.c2 can be imple-
mented by bit-shifting. We also note that Lt is a power
of 2 in every iteration when 2ρ|t− 1.

Let us further multiply all the input arc costs such
that they become integer multiples of 2ρ by a bit-
shift operation. For this modified input, Dt is also an
integer multiple of 2 in every iteration, and therefore the
potential changes and all reduced costs remain integers
throughout.

Obtaining the component hierarchy Assume
now that λ = 2, and we use the algorithm as described
in Algorithm 3. The sets contracted during the algo-
rithm can be naturally represented by a rooted tree
(V ∪N,E), where the nodes N correspond to the leaves
and the root r ∈ V to the final contraction of the entire
node set. If the set represented by some v ∈ V was
contracted at iteration t, we set a(v) = Lt.

We claim that (V ∪ N,E, a) forms a component
hierarchy of Gπ = (N,A, cπ) with parameter λ = 2. All

a(v) = Lt values are integer powers of 2. It is immediate
that the leaves in the subtree of each v ∈ V form a
strongly connected component in Gπ. Let v represent
a set contracted in iteration t, that is, v = Pi for a set
Pi in the partition Pt. If lca(i, j) = v for i, j ∈ N , that
means that the nodes i and j got contracted together
in iteration t. We show that a(v) ≤ β(i, j) ≤ ξa(v), and
that the nodes of desc(v) contains a bottleneck shortest
path between i and j. If t = 1, then L1 = bCminc2,
and Pi is strongly connected in the subgraph of arcs
of cost at most ξL1. If t > 1, then (N̂t, Ât) contains
a path between the contracted images of i and j with
all arc costs between a(v) = Lt and ξLt, and every
i–j path must contain an arc of cost ≥ Lt. We can
map this back to the original graph by uncontracting
the sets from previous iterations; all arc obtained in the
uncontraction will have costs ≤ ξLt−1 < ξLt. �

4 The shortest path algorithm

In this section, we assume that a 3-min-balanced di-
rected graph G = (N,A, c) is given as is a component
hierarchy (V ∪N,E, r, a) for G with parameter 2. The-
orem 3.1 shows that the time to obtain reduced cost
cπ such that Gπ = (N,A, cπ) is 3-min-balanced, and
the time to obtain a corresponding component hierar-
chy for Gπ is O(m

√
n log n). Further, recall that for

any i–j path P , cπ(P ) = c(P )− π(i) + π(j). Therefore,
the set of shortest paths between any two nodes is the
same in G and Gπ. For simplicity of notation, in this
section we assume that the input cost function c is al-
ready 3-min-balanced, integral, and strictly positive; we
can achieve integrality by appropriately multiplying the
cost function. The algorithm described in this section
is an adaptation of Thorup’s [26] result to the setting of
balanced directed graphs.

4.1 Upper bounds for the component hierarchy
Let us be given a component hierarchy (V ∪N,E, r, a)
for a directed graph G = (N,A, c) with parameter
λ > 1. For a node u ∈ V ∪ N , the height h(u) is
the length of the longest path between u and a node in
desc(u); each u ∈ N , we have h(u) = 0. We define the
functions U, η : V → Q recursively, in non-decreasing
order of h(u) as

(4.6)

U(v) :=(2λ− 1)a(v)(| children(v)| − 1)

+
∑

v′∈children(v)\N

U(v′) ,

η(v) :=1 +

⌈
U(v)

a(v)

⌉
.

Lemma 4.1. Let (V ∪ N,E, r, a) be a component hier-
archy for a directed graph G = (N,A, c) with parameter
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λ, and let U, η be as in (4.6). For any pair of nodes
i, j ∈ N and v = lca(i, j), there is an i–j path P of
length at most U(v), where each node of P is in desc(v).
In addition, ∑

v∈V
η(v) < (2λ+ 2)|N | .

Proof. Let i, j ∈ N and v = lca(i, j). The proof is
by induction on h(v). Consider the i–j path P ′ in
desc(v) such that c(e) ≤ (2λ − 1)a(v) for all e ∈ P ′, as
guaranteed by the property of the component hierarchy.

In the base case h(v) = 1, the bound is immediate,
since P ′ has at most | children(v)|−1 arcs. Assume now
h(v) > 1, and that the statement holds for any i′, j′ with
h(lca(i′, j′)) < h(v). One can choose an i–j path P that
satisfies the following property for each child u of v. If
i′ and j′ are the first and last nodes of P that are in
desc(u), then the subpath in P from i′ to j′ consists of
nodes of desc(u). By the inductive hypothesis, for each
child u of v, the length of the subpath in desc(u) is at
most U(u). There are at most | children(v)| − 1 arcs in
P between different desc(u) subpaths; their cost is at
most (2λ − 1)a(v)(| children(v)| − 1). Thus, the bound
c(P ) ≤ U(v) follows.

Let us now turn to the second statement. We
analyze the contribution of each i ∈ N to the sum∑
v∈V U(v)/a(v). Let i = v0, v1, v2, . . . , vk = r be the

unique path in the tree (V,E) from i to the root; thus,
p(vt) = vt+1 for t = 0, . . . , k−1. Then, the contribution
of i to each U(vt) is less than (2λ− 1)a(v1). Using that
a(vt+1) ≥ λa(vt) for each t = 0, . . . , k − 1, we see that∑

v∈V \N

U(v)

a(v)
< (2λ− 1)

∑
i∈N

∞∑
t=1

1

λt−1

=
(2λ− 1)λ

λ− 1
|N | < 2λ|N | .

The statement follows noting also that |V \N | ≤ |N |−1,
since (V ∪ N,E) is a tree, and η(v) < 2 + (U(v)/a(v))
for all v ∈ V \N .

4.2 Setting the stage Given the input directed
graph G = (N,A, c), our goal is to compute the shortest
path distances from a source node s ∈ N to all nodes in
N . We will assume that c is a 3-balanced integer cost
function, and that we are given the component hierarchy
(V ∪N,E, r, a) for G with parameter 2, obtained as in
Theorem 3.1. Further, the bounds U, η : V → Q+ are
defined as in (4.6).

We now summarize the notation used in the algo-
rithm; for convenience, we repeat some notation from
Section 2.

Pointers in the component hierarchy

p(v) the parent of a node/vertex v ∈
(V ∪N) \ {r}

children(v) the set of nodes/vertices u such
that p(u) = v

desc(v) the set of nodes i ∈ N that are
leaves in the subtree rooted at
v ∈ V

lca(u, v) the least common ancestor of
nodes/vertices u and v

Distances labels for nodes and vertices

d(i): i ∈ N the shortest distance from the
source s to node i ∈ N

d(v): v ∈ V defined as min{d(i) : i ∈ desc(v)}
D(i): i ∈ N an upper bound on d(i) as com-

puted by the algorithm
D(v): v ∈ V an upper bound on d(v), to be

specified later
S ⊆ N ∪ V a set of permanent nodes and

vertices in the algorithm
pred(i) the predecessor of node i in the

algorithm

If i ∈ S then D(i) = d(i). Nodes in N \S are called
temporary. The values D(i) are initialized as D(s) = 0
and D(i) = ∞ for i 6= s. The predecessors are defined
for nodes with finite D(i) values. The bound D(i) is
propagated from the in-neighbour pred(i) ∈ S, that
is, D(i) = D(pred(i)) + c(pred(i), i) for i ∈ N \ {s}.
The graph of the arcs (pred(i), i) is acylic, and contains
a path from the source s to every node i ∈ N with
D(i) <∞.

Active vertices and buckets Each vertex v ∈ V can
be active or inactive. Initially, the root r is the only
active vertex. A vertex can only become active if all its
ancestors are active. Once activated, a vertex remains
active until it becomes permanent (enters S). One of the
active vertices will be CV, the current vertex, initalized
as CV = r. When a vertex is activated, we create a
data structure of buckets.

Buckets(v) the list of buckets for vertex v ∈
V

FirstB(v) the first bucket of the list
Buckets(v)

LastB(v) the last bucket of Buckets(v)
Upper(v) the upper bound associated with

LastB(v)
CurrentB(v) the “current bucket” of vertex v
NextB(v) the bucket that fol-

lows CurrentB(v);
NextB(LastB(v)) = ∅

L(B) the lower bound associated with
bucket B
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For the kth bucket B ∈ Buckets(v), L(B) is an
integer multiple of a(v). A child i ∈ children(v) is stored
in bucket B ∈ Buckets(v) if L(B) ≤ D(i) < L(B)+a(v).

A node i is contained in a bucket of their parent
p(i) if and only if p(i) is active. Otherwise, we maintain
a pointer GIA(i) that denotes the greatest inactive
ancestor of i. This value is maintained using the
Split/FindMin data structure introduced by Gabow
[10], as described in the full version.

Distances labels for vertices For vertices v ∈ V , the
distance label D(v) is defined as follows:

• If v is active, then D(v) = L(CurrentB(v)).

• If v is inactive, and p(v) is active, then D(v) =
min{D(i) : i ∈ desc(v)}.

• If both v and p(v) are inactive, then D(v) is
undefined.

For inactive vertices, D(v) is also maintained using the
Split/FindMin data structure.

Algorithm 4 Shortest-Paths

Input: A directed graph G = (N,A, c) with c ∈ ZA++,
source node s ∈ N , a component hierarchy (V ∪
N,E, a) for G with parameter 2.

Output: Shortest path labels for each i ∈ N from s.
1: S ← ∅ ;
2: D(s)← 0 ; D(r)← 0 ;
3: for j ∈ N \ {s} do D(j)←∞ ;

4: for v ∈ V do compute U(v) and η(v) as in (4.6) ;

5: Activate(r) ;
6: CV← r ;
7: while D(r) < Upper(r) do Main ;

8: return labels D(i): i ∈ N .

4.3 Description of the algorithm The algorithm
is a bucket-based label setting algorithm, similarly to
a bucket-based implementation of Dijkstra’s algorithm.
For each node i ∈ N , we maintain an upper bound
D(i) on the true distance d(i) from s, and gradually
extend the set S of permanent nodes. A node i enters
S when the following are true: the current vertex is
v = p(i), and the algorithm selects node i from the
bucket CurrentB(v). At the iteration at which i enters
S, D(i) = d(i). For nodes i ∈ N \ S, D(i) is the length
of the shortest s–i path in S ∪ {i}; there is such a path
if and only if D(i) <∞.

Dijkstra’s algorithm always adds a node j ∈ N\S to
S that has minimal D(j) value. Our algorithm may add

nodes whose labels are non-minimal, but we maintain
the property that when j is added,

(4.7) D(j) ≤ D(i) + b(i, j) ∀j ∈ N \ S .

This condition is sufficient for establishing the cor-
rectness of the algorithm. (See Lemma 4.4).

The overall algorithm is shown in Algorithm 4.
After initialization, it repeatedly calls the subroutine
Main (Algorithm 7), which relies on the subroutines
Activate(v) (Algorithm 5) and Update(i) (Algo-
rithm 6). The subroutines rely on the Split/FindMin
data structure, as detailed in the full version.

Initially, the current vertex is set as the root: CV =
r. We now outline the different cases in Main. At
the current vertex, B = CurrentB(CV) is the smallest
nonempty bucket.

If B contains a node i, we make it permanent, i.e.,
add it to S. When a node enters S, the subroutine
Update(i) updates the labels for each out-neighbour j
of i to min{D(j), D(i) + c(i, j)}, similarly to Dijkstra’s
algorithm. We then update the estimates D(v) for
vertices. Namely, if D(j) decreases, then we may need
to update D(GIA(j)) using Split/FindMin. The node i
is then removed from the bucket B.

If the bucket B does not contain any nodes, but
contains some vertices, then we set the new current
vertex as one of the children v of the current vertex CV
in this bucket. If v is inactive, we call Activate(v).
This subroutine creates the bucket data structure at v,
and updates the D(w) values of the child vertices w of
v using Split/FindMin.

The subroutine Activate(v) requires the following
procedures. AddBucket(v) creates an empty bucket
and appends it to the end of the list Buckets(v). We
define Upper(v) as the upper bound associated with the
last bucket of v.

The procedure MoveToBucket(j) first lets v =
p(j), then determines if there is a bucket B′ of
Buckets(v) whose range contains the value D(j). This
can be identified by the division bD(j)/a(v)c; recall
that a(v) is a power of two, and thus this can be ob-
tained by bit-shift operations. If there is no such bucket,
that is, D(j) /∈ [L(v),Upper(v)], no operation is per-
formed. Otherwise, j is added to the bucket B′ un-
less j was already contained in B′. If j was already
contained in some other bucket B′′ ∈ Buckets(v), then
j is deleted from B′′. The procedure DeleteFrom-
Bucket(j) deletes the node/vertex j from the bucket
of Buckets(p(j)).

The remaining possibility in Main is when the
bucket B becomes empty in the current iteration. We
update the label D(CV) to D(CV) + a(CV). If B is
not already the last bucket at CV, then we move the
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current bucket of CV to NextB(B). If CV 6= r, we check
if the increase in D(CV) causes CV to move up to the
next bucket of p(CV). In such a case, we change the
current vertex CV to its parent p(CV). Finally, in case
B = LastB(CV), we are finished processing CV. We
add this vertex to S, and the current vertex is moved to
p(CV), unless CV = r. The algorithm terminates once
the final bucket LastB(r) becomes empty.

Note that in the first iterations, the current vertex
moves down along the r–s path. Once CV = p(s), the
first node added to S is s.

Let us now sketch the reason why the property
(4.7) holds when j is added to S. This can happen
if j is in the current bucket B of the current vertex
CV = p(i). Consider any i ∈ N \ (S ∪ {j}), and let
v = lca(i, j). Then, b(i, j) ≥ a(v) by the property
of the component hierarchy; we show the stronger
property D(j) < D(i) + a(v) that implies (4.7). This
stronger property is a consequence of the following two
properties: D(v) ≤ D(i) (Lemma 4.4), and D(j) <
D(v) + a(v) (Lemma 4.5).

Algorithm 5 The Activate subroutine

1: procedure Activate(v)
2: Buckets(v)← 0 ;
3: B ← AddBucket(v) ;
4: FirstB(v)← B ; CurrentB(v)← B ;

5: Λ← a(v)
⌊
D(v)
a(v)

⌋
;

6: L(B)← Λ ;
7: for k = 2, . . . , η(v) do
8: Λ← Λ + a(v) ;
9: B ← AddBucket(v) ;

10: L(B)← Λ ;

11: Upper(v)← Λ + a(v) ;
12: for w ∈ children(v) ∩ V do
13: D(w)← min{D(i) : i ∈ desc(v)} ; . using

the Split/FindMin data structure
14: MoveToBucket(w) ;

15: for w ∈ children(v) ∩N do
16: MoveToBucket(j) ;

4.4 Analysis

Theorem 4.1. For G = (V,E, c) with c ∈ ZE++ with
n = |N | and m = |A|, and provided the component
hierarchy, Algorithm 4 computes shortest paths from
node s ∈ N to all other nodes in O(m) time.

We prove the theorem as a sequence of the following
lemmas. The first two lemmas show the running time
bound, and the rest shows correctness, namely, that the

Algorithm 6 The Update subroutine

1: procedure Update(i)
2: for (i, j) ∈ A(i) do
3: if D(i) + c(i, j) < D(j) then
4: D(j)← D(i) + c(i, j) ;
5: pred(j)← i ;
6: if p(j) is active then MoveTo-

Bucket(j) ;
7: else
8: w ← GIA(j) ;
9: D(w)← min{D(j), D(w)} ; . using

the Split/FindMin data structure

algorithm adds every node in N to S and has label
D(i) = d(i) when i is added to S.

Lemma 4.2. The Procedure Main() is called is O(n)
times.

Proof. Let B be the current bucket at an iteration of
Main(). We consider the cases according as (i) B
contains a node, or (ii) B contains a vertex but no node,
or (iii) B is empty.

Whenever case (i) occurs, a node is added to
S, giving a bound of O(n) for this case. In case
(iii), CurrentB(v) is replaced by NextB(B), and CV is
possibly replaced by p(CV). The number of times this
can occur is equal to the total number of buckets, which
is O(n) by Lemma 4.1.

Let us now turn to case (ii). Let τ denote the
distance of vertex CV from the root r in the component
hierarchy. Both in the first and the final iteration,
CV = r, and thus τ = 0. Whenever case (ii) occurs,
τ increases by one. The only way τ can decrease is
in case (iii), if the current bucket of CV is emptied
and CV is replaced by p(CV), unless CV = r and we
terminate. Thus, the total number of occurrences of
case (ii) is equal to the total number of increases in τ ,
which equals the total number of decreases, which is
bounded by O(n). Thus, each of the three cases can
only occur O(n) times, and the claim follows.

Lemma 4.3. The total running time of Algorithm 4 is
bounded as O(m).

Proof. The time for initialization is O(n). We now
consider the time for MoveToBucket. Each call
takes O(1) time, and it is called once each time that
D(i) is decreased for i ∈ N . (If p(i) is active, then
node i is placed in a bucket. If p(i) is inactive, then
GIA(i) is placed in a bucket.) Thus, the total time for
MoveToBucket is O(m).

We now consider Update(i). At each call, the arcs
in A(i) are scanned. The time to updateD(j) for (i, j) ∈
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Algorithm 7 The Main subroutine

1: procedure Main
2: v ← CV ;
3: B ← CurrentB(v) ;
4: if B ∩N 6= ∅ then
5: select a node i ∈ B ∩N ;
6: DeleteFromBucket(i) ;
7: S ← S ∪ {i} ;
8: Update(i) ;
9: else if B ∩ V 6= ∅ then

10: select a vertex w ∈ B ∩ V ;
11: CV← w ;
12: if w is inactive then Activate(w) ;

13: else
14: D(v)← D(v) + a(v) ;
15: if D(v) = Upper(v) and v 6= r then
16: S ← S ∪ {v} ;
17: delete v from its bucket in Buckets(p(v))

;
18: CV← p(v) ;

19: if D(v) < Upper(v) then
20: CurrentB(v)← NextB(B)
21: if v 6= r and D(v) ≥ D(p(v)) + a(p(v))

then
22: delete v from its bucket in

Buckets(p(v)) ;
23: move v to the bucket

NextB(CurrentB(p(v))) ;
24: CV← p(v) ;

A(i) is O(1). If p(j) is active, then the time to put
node j in the correct bucket of Buckets(p(j)) is O(1).
A potential bottleneck occurs when p(j) is inactive and
D(j) is updated. In this case, the algorithm determines
w = GIA(j) and then updates D(w). The amortized
time to determine w and update D(w) is O(1) using
Thorups [26] implementation of the Split/FindMin data
structure.

We now consider the time for Activate(v). This
procedure is called O(n) times, and the total number of
buckets is O(n). The potential bottleneck is updating
D(w) for w ∈ V . This is accomplished using the
Split/FindMin data structure. Accordingly, the running
time is the same as for the Update step.

Finally, we consider the time spent in Procedure
Main. By Lemma 4.2, this procedure is called O(n)
times in total. Not including the time for the subrou-
tines Update and Activate, the running time is O(n)
in total. This completes the proof of the lemma.

Lemma 4.4. Suppose that vertex w is a descendant of
vertex v, and that both w and v are active. Then,

D(v) ≤ D(w) ≤ D(v) + a(v).

The proof is given in the full version of the paper,
using induction on the length of the unique path from
w to v in the component hierarchy.

Lemma 4.5. Let j ∈ N \ S and let v be an active
ancestor of j. Then, D(v) ≤ D(j). In the iteration
when j is added to S, we also have D(j) < D(v) +a(v).

Proof. For every j ∈ N \ S, let p̄(j) = p(j) if p(j) is
active, and p̄(j) = GIA(j) otherwise. That is, p̄(j) is
the nearest ancestor of j for which D( ) is defined. For
the first claim of the lemma, it suffices to show that
for v = p̄(j), D(v) ≤ D(j). Then, D(v′) ≤ D(j)
follows for every ancestor v′ of j. If v is active, then
D(v′) ≤ D(v) for every ancestor v′ of v by Lemma 4.4.
If v is inactive, but p(v) is active, then D(p(v)) ≤ D(v)
and D(v′) ≤ D(p(v)) for every ancestor v′ of p(v). For
the second claim of the lemma, it suffices to show that
it is true when v = p(j).

We establish the second claim now in the case that
v = p(j). When j is added into S, it is in the first
bucket of v. Thus, D(j) < D(v) + a(v).

We now establish the first claim of the lemma. If
p̄(j) = GIA(j), we claim that D(v) ≤ D(j). To see
why, let x = GIA(j). Then x is inactive, and p(x)
is active. Accordingly, the algorithm maintains that
D(x) = min{D(i) : i ∈ desc(x)}, and the claim is true.

For the case that p(j) is active, we prove it using
induction on the number of iterations. The claim is
clearly true at the first iteration, where the only active
vertex is r and D(r) = 0. We show that if the claim is
true for every j ∈ N \ S in iteration t, then it remains
true in iteration t+ 1.

The only case that needs to be considered is when
the label of node j is decreased, which occurs when
Update(i) is executed for some i ∈ N such that
(i, j) ∈ A. Let D(.) and D′(.) denote the labels before
and after this call to Update(i), and let z = lca(i, j),
and w = p(i). By induction, D(w) ≤ D(i).

If z = v (and thus w is a descendant of v), then
Lemma 4.4 implies D(v) ≤ D(w), and thus,

D′(j) = D(i) + c(i, j) ≥ D(w) ≥ D(v) = D′(v) .

Next, assume that v 6= z. Lemma 4.4 and the inductive
hypothesis imply

D(v)− a(z) ≤ D(z) ≤ D(w) ≤ D(i),

and therefore,

D′(j) = D(i) + c(i, j) ≥ D(v) + c(i, j)− a(z) ≥ D(v) .

The final inequality follows since b(i, j) ≤ c(i, j), and
a(v) ≤ b(i, j) is a required property of the component
hierarchy.
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Lemma 4.6. For every vertex v ∈ V and descendant
i ∈ desc(v), d(i) < Upper(v).

Proof. Upper(v) is computed in Activate(v). When
this subroutine is called, D(v) is the minimum of D(i)
over i ∈ desc(v). Let i0 ∈ desc(v) be the node giving
the minimum, that is, D(v) = D(i0). Then, for every
j ∈ desc(v), Lemma 4.1 asserts that d(j) ≤ d(i0) +
U(v) ≤ D(v) + U(v).

In line 5 of Activate(v), we set the value of Λ as
D(v) − a(v) < Λ ≤ D(v), where Λ = L(FirstB(v)).
The algorithm then defines Upper(v) = Λ + η(v)a(v).
Recall from (4.6) tha η(v) = 1 + dU(v)/a(v)e. Thus,
Upper(v) > D(v) + U(v) ≥ d(j) follows.

Lemma 4.7. The algorithm terminates with N ⊆ S,
and D(j) = d(j) for every j ∈ N .

Proof. Let j be any node of N . Let P = i1, i2, . . . , ik
(where i1 = s and ik = j) be a shortest path from node
s to node j. We claim that every node in P will be
added to S, and they will be added to S in increasing
order of index. In such a case, D(j) = d(j) follows.

First, let us consider the case when every node in
P was added to S during the algorithm. We prove
by contradiction that the nodes are added to S in
increasing order of the index.

Suppose that node ip is the first index node selected
prior to its predecessor ip−1. Let i` be the last node of
P selected prior to node ip. Thus, D(i`) = d(i`). More-
over, subsequent to carrying out Update(i`), D(i`+1) =
d(i`+1). Let P ′ be the subpath of P from i`+1 to ip.
Let v be the lowest common ancestor of the nodes of
P ′. Thus, there is some arc e of P ′ with c(e) ≥ a(v).

By the second part of Lemma 4.5, at the iteration
at which ip was selected, the following is true:
(4.8)

D(ip) < D(v) + a(v) ≤ D(i`+1) + c(e)

= d(i`+1) + c(e) ≤ d(i`+1) + c(P ′) = d(ip)

But this is a contradiction, showing that if every node
in P was added to S, then D(j) = d(j) at termination.

Next, assume that some nodes in P are not included
in S throughtout the algorithm; we show that this leads
to a contradiction. Let ip be the first node in P not
added to S; clearly p ≥ 2. The above argument shows
that each of i1, i2, . . . , ip−1 were added to S in this
order, and D(ik) = d(ik) for all k ∈ [p − 1] at the time
they were added to S. Further, Update(ip−1) has set
D(ip) = d(ip).

Consider the final iteration when the algorithm
terminated at D(r) = Upper(r). Since the root r is an
ancestor of ip, D(r) ≤ D(ip) according to Lemma 4.5.
On the other hand, Lemma 4.6 shows d(ip) < Upper(r).
We obtain a contradiction from D(ip) = d(ip).

5 Conclusions

In this paper, we have given an O(mn) algorithm for the
directed all pairs shortest paths problem with nonneg-
ative integer weights. Our algorithm first replaces the
cost function by a reduced cost satisfying an approxi-
mate balancing property in O(m

√
n log n) time. Subse-

quently, every shortest path computation can be done
in linear time, by adapting Thorup’s algorithm [26].

One might wonder if our technique may also
lead to an improvement for APSP in the addition-
comparison model, where the best running time is
O(mn + n2 log log n) by Pettie [21]. This running time
bound is based on multiple bottlenecks. However, as
explained in Section 1.1.1, the approximate cost bal-
ancing is able to get around the sorting bottleneck of
[21]. Using the O(m logα(n,m)) implementation of
Split/FindMin, an overall O(mn logα(n,m)) might be
achievable.

However, there is one remaining important bottle-
neck where our algorithm crucially relies on bit-shift
operations: the operation MoveToBucket(j), which
places a node/vertex in the bucket at v = p(j) con-
taining the value D(j). Pettie and Ramachandran [22]
show that these operations can be efficiently carried out
in O(1) amortized time per operation in a bucket-heap
data structure, assuming the hierarchy satisfies certain
‘balancedness’ property. Section 5 of the paper shows
how the ‘coarse hierarchy’ obtainable from a minimum
spanning tree and used by Thorup can be transformed
to a ‘balanced hierarchy’. This method does not seem
to easily apply to the directed hierarchy concept used
in this paper.

Our approximate min-balancing algorithm may be
of interest on its own, and has strong connections to the
matrix balancing literature as detailed in Section 1.1.2.
For finding an (1 + ε)-min-balanced reduced cost for

ε = O(1), our algorithm takes O(m
√
n logn
ε ) time.

One might wonder if there is an algorithm with the
same polynomial term Õ(m

√
n) but with a dependence

on log(1/ε). We note that the algorithm in [24] for
approximate max-balancing has a log(1/ε) dependence.
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